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We motivate and analyse a reaction—advection—diffusion model for the dynamics
of a phytoplankton species. The reproductive rate of the phytoplankton is deter-
mined by the local light intensity. The light intensity decreases with depth due to
absorption by water and phytoplankton. Phytoplankton is transported by turbulent
diffusion in a water column of given depth. Furthermore, it might be sinking or
buoyant depending on its specific density. Dimensional analysis allows the reduc-
tion of the full problem to a problem with four dimensionless parameters that is
fully explored. We prove that the critical parameter regime for which a station-
ary phytoplankton bloom ceases to exist, can be analysed by a reduced linearized
equation with particular boundary conditions. This problem is mapped exactly to
a Bessel function problem, which is evaluated both numerically and by asymptotic
expansions. A final transformation from dimensionless parameters back to labo-
ratory parameters results in a complete set of predictions for the conditions that
allow phytoplankton bloom development. Our results show that the conditions for
phytoplankton bloom development can be captured by a critical depth, a compen-
sation depth, and zero, one or two critical values of the vertical turbulent diffusion
coefficient. These experimentally testable predictions take the form of similarity
laws: every plankton—-water-light-system characterized by the same dimensionless
parameters will show the same dynamics.
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1. INTRODUCTION

Phytoplankton, the microscopically small plants that drift in the water column of
lakes and oceans, provide the basis of nearly all food webs in aquatic ecosystems.
Phytoplankton species depend on light for their metabolism. Hence, phytoplank-
ton populations need to stay close to the surface, since light availability decreases
with depth. On the other hand, many phytoplankton species are heavier than water.
They have a tendency to sink. Sinking phytoplankton populations play an impor-
tant role in climate regulation, as they can act as a carbon pump. By means of
their photosynthetic carbon fixation, phytoplankton extract carbon dioxide from
the atmosphere, and they can export a considerable part of this carbon by sink-
ing downwards into the ocean interior (Falkowski ez al., 1998; Arrigo et al., 1999;
DiTullio et al., 2000). Here we will consider light as the factor limiting the growth
rate of sinking phytoplankton populations. Thereby, we implicitly assume that all
other resources, like nitrogen, phosphorus, and iron, are in ample supply. The sink-
ing of phytoplankton can be compensated by turbulent mixing, or it can be stopped
at the bottom of the water column. Hence, the question arises whether in an aquatic
system with given depth, given rate of turbulent mixing, and given light intensity
at the surface, a particular phytoplankton population will survive. Even for a single
species, a full answer to this question is still missing.

If a phytoplankton population can survive in the long run, we will say that
there is phytoplankton ‘bloom development’. For well-mixed aquatic systems with
homogeneous phytoplankton density, conditions for phytoplankton bloom devel-
opment have been extensively investigated by means of integro-differential equa-
tion models (Sverdrup, 1953; Platt ef «l., 1991; Huisman and Weissing, 1994;
Weissing and Huisman, 1994). Here, theory predicts that phytoplankton blooms
can develop only if the depth of the well-mixed water column is less than a critical
threshold value, generally known as the ‘critical depth’ in oceanography. If the
depth of a mixed layer would exceed this critical depth, the average light intensity
is too low to sustain a phytoplankton population. This theory for well-mixed sys-
tems is supported by extensive laboratory experiments (Huisman, 1999; Huisman
et al., 1999a). Many, if not most, aquatic ecosystems are not well mixed, how-
ever. A few theoretical studies, using partial differential equation models, have
investigated phytoplankton bloom development under incomplete mixing (Riley
et al., 1949; Shigesada and Okubo, 1981; Totaro, 1989; Britton and Timm, 1993).
In particular, recent numerical work considering neutrally buoyant phytoplankton
led to the discovery of a critical threshold value for the vertical turbulent diffu-
sion coefficient (Huisman et al., 1999b.c). If turbulent diffusion remains below
this threshold value, populations of neutrally buoyant phytoplankton can outgrow
the vertical mixing rates, and maintain a position in the upper well-lit part of the
water column. Thus, the critical-depth theory applicable to well-mixed systems
no longer holds if turbulent diffusion is sufficiently low. This finding was based
on numerical simulations. A rigorous mathematical analysis of the conditions that
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allow phytoplankton bloom development under incomplete mixing is still lacking.
In the present paper, we close this gap. Moreover, we generalize the analysis by
including sinking or buoyancy of the phytoplankton. We analyse the long time
survival conditions of a single phytoplankton species in the complete regime of
possible physical parameters.

The paper is organized as follows: in Section 2, we introduce and motivate our
model for one phytoplankton species. In Section 3, we perform a dimensional
analysis that reduces the nine physical parameters of the problem to four dimen-
sionless parameters called A, B, C and the dimensionless water-column depth L.
In Section 4, we prove that the phase boundaries that determine phytoplankton
bloom development can be derived from a reduced linearized equation with homo-
geneous boundary conditions. This is the key for a simple numerical procedure,
developed and used in Section 5, that characterizes the critical conditions for phy-
toplankton blooms in terms of a maximal dimensionless water-column depth L* =
L*(A, B, C). In Section 6, we present our analytical results in terms of the dimen-
sionless parameters. A key ingredient is the mapping of the linearized equation
derived in Section 4 onto a Bessel function problem with particular boundary con-
ditions. This allows for the identification of several limit cases and for asymptotic
expansions about them. In Section 7, we return from the dimensionless variables A,
B and C to physical variables like the diffusion constant D or the light intensity /;,
at the surface, and we discuss under which conditions a (bounded) maximal water
depth H = H(D., I,) for a given phytoplankton species exists and how it can be
derived from the previous analysis. Section 8 contains summary and conclusion.

2. THE MODEL

We here introduce our model for a single phytoplankton species. The phyto-
plankton population density is taken as a continuous quantity, and variations in the
directions parallel to the water surface are neglected. Let s denote the depth below
the water surface, where s runs from O at the surface to some A > 0 at the bottom,
and let w(s, t) denote the phytoplankton population density at depth s and time
t. The changes in population density then take, in general, the form of a partial
differential equation

i (s, 1) 0 w(s, 1) = S(w(s, 1)) (1)
8[‘03’ +8S.1wé, = S(w(s, 1)).

This is the continuity equation for plankton, relating the local plankton density w
to the local plankton flux density j,, and to the source term S(w(s, )) accounting
for reproduction and death of the plankton. Plankton does not cross the air~water-

and the water—ground-interface, therefore the boundary conditions at s = 0 and
s = H are

Juw(0,1) =0 and Jo(H, 1) =0. (2)
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For the plankton flux density, we use the simple approximation
j(u(sv t) =-D 8.\‘0)(5" t)+va)(37 t)' (3)

It is composed of an undirected diffusive motion — D3, that is driven by the
plankton density gradient, and a directed motion vw. The diffusion can be just
Brownian molecular diffusion if the water is macroscopically at rest, or it can
mimic turbulent mixing of water. For planktonic cells the second effect is consid-
ered dominant, and D is called the turbulent diffusion coefficient (Okubo, 1980).
The approximation (3) is valid for relatively low plankton densities, since effects
of collective transport or the interaction of hydrodynamic flow fields when several
cells are sinking or rising together in the same area, are neglected. Many phy-
toplankton species lack flagella or cilia, so they cannot swim actively and their
motion is passive. This is the case to be considered here. Hence, the directed mo-
tion vw is due to a specific plankton density different from water. In the absence
of diffusion, the drift velocity v can be approximated by Stokes’ law (Landau and
Lifshitz, 1966; Reynolds, 1984; Denny, 1993)

f{i (/Op - pu') 8

l’:¢18 n

(4)
where g is the earth’s gravitational acceleration, p, is the specific density of the
phytoplankton species concerned, p,, is the density of water, n is the viscosity of
water, and d is the diameter of a plankton cell. The parameter ¢ is a numerical form
factor which takes the particular shape of the object into account. For a spherical
cell, we have ¢ = 1. For a species heavier than water, the velocity v is posi-
tive, and the motion is downwards. If diffusion is nonvanishing, the laminar flow
approximation of equation (4) loses its validity, but dimensional analysis for the
mean velocity due to the gravitational force o (p, — p.) g still yields a parameter
dependence as in (4), but with a different numerical factor ¢.

The density p,, of phytoplankton cells is a species-specific parameter. Species
with gas vesicles, like some cyanobacteria, and species with a high oil content,
like the green algae Botryococcus, have a lower density than water. They will
float upwards (v < 0) and will be called buoyant. Because most cell components
have a slightly higher density than water, most species that lack gas vesicles have
a tendency to sink downwards slowly (v > 0). According to the area factor o>
in (4), larger cells will move faster than smaller ones. The smallest species, like
Chlorella, Synechococcus, and Prochlorococcus, have almost no vertical velocity
(v = 0).

The source term for the reproduction and death rate in (1) is approximated as

S(w(s, 1)) =gl (s, 1)) w(s, 1), &)

where g(/ (s, t)) is the specific growth rate of phytoplankton as a function of light
intensity /(s,t). This form implies that all nutrients are sufficiently available so
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that the light intensity limits the growth rate. The simplest approximation for such
behaviour is

gl (s.t)=al(s,t)—¢, (6)

with a reproduction rate «/ proportional to the local light intensity and a constant
death rate ¢. (Here £ stands for loss, in agreement with the earlier literature.) This
1s a good approximation at low light intensities. However, owing to physiological
limits of the maximal reproduction rates of organisms, the reproduction rate gen-
erally saturates for high light intensities. Such behaviour can be modelled by a
function of the form (Monod, 1950)

gl (s, 1)) = ¢, (7N

I+ecl
or alternatively by (Webb et al., 1974; Platt et al., 1980)

| —e ! ‘
g(l(s,r)):a-—-—-c——é. (8)

For ¢/ « 1, these functions reduce to the approximation of equation (6). We here
work with another general expression

gl(s, ) =al%(s,t) — ¢, 9)

that with an appropriate choice for the exponent 0 < « < 1 can give a good
approximation to (7) or (8). Equation (9) is used because it allows for explicit
analytical solutions in terms of Bessel functions. The structure of these solutions
turns out to be completely independent of the value of the exponent « as long
as ¢ > 0 and, hence, as long as g(/) is an increasing function of /. Besides
the numerical evidence, this strongly suggests that our findings do not rely on the
particular form of (7), (8), or (9).

As the simplest possible approximation and since typical life and reproduction
times are of the order of a day or longer, we assume the light intensity at the surface
to take the constant value

10, 1) = 1. (10)

Light intensity is decreasing with depth s due to light absorption

.

]

a5 I(s,t) = —(Kjpg +k w(s, 1)) I(s,1), (11)
s

where £ is the specific light absorption coefticient of the phytoplankton and K, is

the total background absorption due to nonphytoplankton components. The explicit

solution of equations (10) and (11) for a given integrated phytoplankton density

fg w(s', 1) ds'is

L, [ N X
I(s,1) = lin e'Kl,gA\ ()‘l\‘/o w(s',1) ds . (12)
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Equations (1), (2), (3), (5), (9). (10) and (11) determine the mathematical prob-
lem, together with initial conditions and with the constraint that densities and
intensities have to be nonnegative, so

w(s, 1) >0 and I(s.t) >0 foral0 <s < Handr >0. (13)

3. DIMENSIONAL ANALYSIS AND SIMILARITY LAWS

As it stands now, the model has nine parameters with physical dimensions: the
water-column depth H, the diffusion constant D, the sinking/buoyancy velocity
v, the parameters ¢ and « in the reproduction rate and the death rate ¢, the light
intensity /;, at the surface, and the absorption rates K, and k. However, phys-
ical phenomena are invariant under the choice of physical units like centimetres
or metres. We use this invariance to reduce the number of parameters by means
of dimensional analysis. A most convenient choice is to measure length and time
scales, plankton density and light intensity as

x=akKys, T=Da’K},t, (14)
k ) 1°(s, 1)
plx, 1) = — w(s, 1), Jx, 1) = ————. (15)
Kh.k‘ liu

In terms of these rescaled dimensionless variables, the problem depends only on
the following four dimensionless parameters

o
alf, _ ? v

=——2—29 - e C=
D oK al; D aKp,

by in

and L=akK, H.

(16)
A can be understood as the ratio between the growth rate at the surface and the
scales of absorption and diffusion, B is the ratio between death and growth at the
surface, C < 0 measures the buoyancy and C > O the sinking, and L is the
dimensionless depth of the water column.

By definition, A, B and L are positive quantities, while the sign of C is not fixed.
Additionally, the problem has no nontrivial solution for B > 1 when the death rate
is larger than the growth rate even at the surface x = 0, as will be proven formally
in equation (28). The parameter regime to be explored is, therefore,

0< A <00, 0<B<l, -0 < C < 00, O<L <oo. (I7)

In terms of these variables and parameters, the equation for the phytoplankton
density defined by (1), (3), (5) and (9), reads

dp=03;p—Cop+A(j—B)p, (18)
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with the boundary conditions (2), (3)
[8vp — Cpli=o =0, [0sp — Cpli=r = 0. (19)
The equation for the light intensity (11) becomes
hiInj=-1-p, (20)
with the boundary condition (10)
j@O,7)=1 2D
The constraint (13) on the nonnegativity of the plankton density now reads
plx,7) >0 forall0 <x < L and T > 0. 22)

From equations (20) to (22), it follows immediately, that j is positive and monoton-
ically decreasing towards 0 as x — 00, so the constraint (13) on j is automatically
obeyed.

The virtue of this dimensional analysis is threefold: (i) it simplifies the equations;
(i1) it reveals the similarity laws of different systems: if two systems are character-
ized by the same four dimensionless variables A, B, C, and L, they exhibit the same
behaviour; (iii) since parameter space is four-dimensional, it can be fully explored
and we will pay special attention to the three-dimensional (A, B, C)-parameter
subspace defined by the limit of infinite water-column depth L.

4. STATIONARY SOLUTIONS AND THE PHASE TRANSITION

From here on, we will investigate whether a given set of parameters (A, B, C, L)
allows for stationary phytoplankton blooms, i.e., whether there are stationary
solutions d; p = 0 with nonvanishing phytoplankton density. In particular, we will
study the critical conditions, where phytoplankton blooms start to exist. Hence we
study the stationary solutions of the problem defined by (18)—(22). To simplify
the notation, we drop the variable t from p, so we now write p = p(x). The
partial derivatives d, then become ordinary derivatives d,. Equations (18)—(21)
now constitute a system of one second-order and one first-order nonlinear ordinary
differential equation with three boundary conditions. Integration of (20) with (21)
leads to a reformulation as one second-order integro-differential equation

d2p — Cd,p + A(e™*~hdr e _ gyp =, (23)

[dip = Cpli=0.. =0, px) =0  forall0=x <L. (24)
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A transformation to the variable R(x) = fd" dy p(v), p = d,R would lead to a
third-order ordinary differential equation with additional boundary value R(0) = 0,
but will not be considered further.

Equation (23) together with (24) for the boundary conditionsatx = Oand x = L
and with the positivity constraint for o (x) define a boundary value problem for the
phytoplankton density p(x). However, it is much more convenient, in particular
for the numerics, to consider the problem rather as an initial value problem, where
the two initial conditions at x =0

,0(0) = P0, [d\p - Cp].r:() =0 (25)

fix L = L|po] as a function of pg, A, B, C. From here on, we will consider A, B
and C fixed, and only write the dependency of L on pp explicitly.

If L{pp] exists, then it is unique, as can be seen from the following argument:
integrate (23) over O < x < X and use the boundary condition (24) at x = 0. The
result is

X
[dip — Cpli=x =—A f dx [e""'S,,(x) — B] p(x), (26)
0
Sp(x) = e~ Jody p, 27)

where p(x) depends parametrically on py, A, B, C. Here p(x) is positive on the
interval according to (24), while e™*S,, (x) is monotonically decreasing for growing
x. A necessary condition foran X = L[ pg] to exist is that the function [¢™*S, (x) —
B] changes sign between 0 and L{pg]. Hence

0 < e HIS, (Llpo]) < B < 8,(0) = 1. (28)

An immediate consequence is that if an L[py] exists, then the expression [d,o —
Cply=x is negative for X < L|[py] and positive for X > L[po]. Hence a second
solution L[pg] cannot exist and L[pg] is unique.

We are now interested in the phase transition” from bloom to no bloom, in par-
ticular in the maximal water depth L*, where for given A, B, C phytoplankton
can still exist. It is intuitively clear, that a higher plankton density leads to more
light absorption, so that the deeper water layers are less favourable for the phyto-
plankton. One therefore expects that the maximal water depth can be realized for
infinitesimal plankton density. This is indeed the case, as we will prove now. More
precisely, we will show for the solutions of problem (23)—(25):

"This phase transition is of second order, hence continuous. Equivalently. in p.d.e. terms, it also
can be classitied as a supercritical bifurcation. We prefer the notion of a phase transition since we
analyse a mean field description of an extended system. Inclusion of fluctuations at a second order
phase transition generically leads to slow, but nonhysteretic, relaxation which also is to be expected
in the present system.
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(1) For a large phytoplankton density pg >> | at the surface, the water-column
depth L{po] is always finite and unique. In fact, in the limit of 1 /oy — 0, it is
given explicitly by the positive solution £, = £, (B) of the equation

L\ (B 1
BL +e & =1, where L[pg] = 1(B) + O(—7> (29)
Lo Py

(2) L{po] is a monotonically decreasing function of py:

L{poal > Llpo.], if po,1 < po,2. (30)

Therefore the smaller the phytoplankton density py at the surface, the larger the
water-column depth L[py]. As a consequence, for given A, B and C, there are
two possibilities: either the water-column depth L[pg] becomes infinite already for
some nonvanishing value of pg or it stays finite up to pyp — 0. We then define

L* := L[0] := lim L[po], 3D
po—0
which is unique and given by

L* = sup L[po). (32)

po>0

In the remainder of the section, these statements are proven.

(1) The result (29) is derived as follows: analyse (23), (24) in the limit of py —
0. Rescale p(x) = po r(x) and use the new initial condition r(0) = 1 and
d.rlo = C instead of (25). The analysis of the exponent in (23) reveals that 1/pp
introduces a new small length scale into the problem, while on the other hand, r (x)

=1+ Cx + - - - changes only on the larger scale 1/C. Inserting these expressions
into (26), L[pg] solves [dyr — Crly=1(p) = O and, therefore,

Llpo] .
0 :/ dx [e7* P00 dvr) _ B) p(x)
0

c y ,
= 0:/ dX [e'%*./o‘d”(,f—o) — B] ,(2(_),
0 Lo

(5)=1003)

L

=f dX e — B] + 0(£) where £ = po L[po]- (33)
0 Lo

The evaluation of the last line for 1/pg — 0 and for £ = L£(B) + O(1/po),

L1 (B) = O(p)) immediately yields (29).

(2) The proof of the statements (30) and (32) proceeds along the following steps:
first eliminate the first derivative from the equation of motion (23) by the transfor-
mation

p(x) = po e Y, (34)
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h,(x), hy(x) / /
Cr2 Llp,,l / Llpy.]

X

Figure 1. Qualitative behaviour of /1| (x) and h2(x) with pg | < pp.2. together with the
resulting Llpg 1] > Llpp 2]

which leads to the transformed equation

d_::ix// + A(e“"'Sw(x)"" - i%)@!f =0, v=+4AB + C?, (35)

with the function

X
Syx) =S, ()" = exp[— / dy e " wm} (36)
0
and the initial conditions, constraint and definition of L[og]
Cx/2 ¢ : - .
Y(0) =1, e N 4 =0, Y(x) =0  for0<x < Llpol
0.Lpo)
(37)

The i -form of the equations will also be the starting point in Section 6.
For the proof of (30) and (32) it is convenient to perform still another transfor-
mation to
d, ¥ (x)

Ve = e b= R = = (38)

The transformed equation reads

Ao+ h>+ A e S, x)P — "Z =0, (39)

with v from (35) and

S(h,x) = expli— / dy exp [Cy/2+ / dz h(z) ]:l (40)
0 0

The initial conditions, constraint and definition of L[] now take the form

C
h(0) = = = h(L[po), lh(x) <00 forO <x < L[p].  (41)
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For small x, the equation for /i can be expanded as

~

C -~
h(x) = re A(l-B)x+ A1+ C — B) + py) X? + 0 (x%). (42)

So h(x) initially for small positive x decreases below C/2 and eventually has to
reach C/2 again from below at L[pg] to obey the condition /1(L[pg]) = C/2.

Compare now two solutions # (x) and A1 (x) of the problem (39)~(41) where py
is replaced by po.; and pg 2, respectively. Assume that pg | is smaller than pg2:

P01 < P2 (43)

The functions hy(x) and /;(x) are shown schematically in Fig. 1. For small x, h»
lies above /iy, since (42) implies that

-

X~
ha(x) = hi(x) = A (P02 =~ po1) = + OG>0 for0<x<l. (44)
We will now prove that i, — h, stays positive. The equation for i, — k| is
de(hy—h)) =hi —h3+ A e™ [ S(hy, )P — S(hy, x)02 . (45)

Now suppose that after an interval 0 < x < X with ho > h,, there is a point
x = X where hy = h,. The expression S(h;, x)?! — S(h,, x)?°2 at this point
X is positive. This is true because S(h2, x) < S(hy,x) < | according to (40)
with A> > /1; and because $”2 < S forall 0 < & < | with inequality (43).
Therefore for the expression in (45)

S(hy, X)) — S(hy, x)2

= [S(hy, x)?" — S(h>, )] + [S(ha, x)7 — S(ha, x)™2] = 0. (46)

It follows from (45) that at the point X where we suppose that i1y = h, we have
d.h> > d.h;. But this implies that at the crossing point, /12 approaches k| from
below, which is in contradiction with k- initially being above A;. Therefore a
crossing point X cannot exist, and

hs > h, forall x > 0. (47)

Therefore if h> reaches the value C/2 for some x = L[pg2] < 00, then this value
of x will be smaller than the x = L[p¢] of ;. Hence L{pp 2] < L{po,] for all
002 > po.i- and (30) is proven.* Equation (32) follows immediately from setting
po.1 = 0 and taking the continuity of L[pg] into account.

¥We thank Lothar Schiifer for helpful discussions in shaping this proof.
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We remark that for 1 — B « 1, equation (42) immediately yields the explicit
approximation
Lipe] = 2(1-B)
Pol = 1+ 00

for small water depth L. Of course, this result confirms (30) and (32).

We note finally that our proof of (30) and (32) was performed for a growth rate
g(1) as in equations (6) or (9). However, the generalization of (30) and (32) to any
function g (/) that is monotonically increasing in [ like (7) or (8) is straightforward.

+ O(1 — B)* (48)

5. NUMERICAL EVALUATION OF THE PHASE TRANSITION

Because of the rigorous bound (32), it is not necessary to study the full nonlinear
problem (23), (24) for determining the phase diagram. Rather the maximal water-
column depth L* = L[0] still allowing for a stationary phytoplankton bloom can
be derived from the linear problem defined by

d2p — Cdep+ Ale™ = B)p =0, (49)

[dip — Cpli=0.1+ =0, p(x) =0  forall0 <x < L%, (50)

if L* is finite. As equation (49) is linear and the boundary conditions and con-
straint (50) are homogeneous, the amplitude of p is no longer fixed, and the single
initial condition [d,p — Cp] = 0 at x = 0 is sufficient to fix a solution that is
unique up to the arbitrary amplitude of p. This amplitude can be fixed, e.g., by

p0) = 1. (51)

The two conditions (50) and (51) at x = 0 together with the second-order equa-
tion (49) define an initial value problem that can be integrated numerically towards
growing x. As also proven, a parameter L* obeying the conditions (50) does not
need to exist for fixed A, B and C, but if it exists, it is unique.

The data for L* presented in Fig. 2 have been derived by simple numerical inte-
gration of this initial value problem for the linear second-order ordinary differential
equation (49). Figure 3 could have been derived by extrapolation of the L* — co-
lines from Fig. 2, but again we found a much simpler numerical technique for Fig. 3
that will be explained in Section 6.2. We will now discuss these figures in more
detail.

A plot of the maximal water depth L* as a function of A, B and C would contain
the complete information of the phase transition. But as (A, B, C, L*) is a four-
dimensional space, only projections can be visualized in a three-dimensional plot.
In Fig. 2, we have chosen to fix B at the values 0.01, 0.2, 0.5 and 0.9 and to plot L*
as a function of A and C. The choice of fixed B was made, because B = £/al?

wm
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Figure 2. The maximal water-column depth L* as a function of the parameters A and C
for fixed values of B = 0.01. 0.2, 0.5 and 0.9. (The slight roughness of the surfaces is a
numerical artefact.) For each value of B, the maximal water depth L* diverges at a certain
curve in the (A, C)-plane. These L* — oo-curves as a function of B are drawn in Fig. 3.

has a simple interpretation as the ratio of death rate and reproduction rate for a
given light intensity /;, at the surface. It will allow for an easy interpretation of the
figures, when we return from dimensionless to laboratory parameters in Section 7.
For small A and sufficiently large C, the maximal water depth L* approaches a
constant. This constant value of L* decreases with increasing death rate B. Fur-
thermore, for fixed B, the maximal water depth L* increases with increasing A and
decreasing C, and reaches infinity at a critical line in the (A, C)-plane.

Figure 3 summarizes the position of the L* — oo-lines from Fig. 2 as a function
of B in a single plot: it shows the surface where L* — o0 in the (A, B, C) param-
eter space. If a system is characterized by a point (A, B, C) below this surface, a
maximal water depth L* does not exist and phytoplankton blooms can develop for
any water-column depth L.
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Figure 3. The surface where L*(A, B,C) — oo in (A, B, C)-parameter space. The
curves on the surface mark either constant A or constant v = /4AB + (2. For any
combination (A, B, C) below this surface, phytoplankton blooms can exist for any water
depth L. Conversely, for any combination (A, B, C') above this surface, phytoplankton
blooms can exist only if water depth is less than a maximal water depth L*.

6. ANALYTICAL RESULTS ON THE PHASE TRANSITION

The phase transition problem (49), (50) can be studied not only numerically,
but also analytically. This will allow the derivation of explicit asymptotes for the

surfaces shown in Figs 2 and 3.

6.1. The general criterion. For the analytical study, it is convenient to transform
equations (49), (50) first to ¥ (x) = ¢~“*/*p(x) as in (34)—~(36). Then the variable

x is transformed further as
Z=44e7, Y) =)
This brings equation (49) into the form of a Bessel equation

-

d? d .
‘zdzz @(z) + 2 @(z) + (22 = v?) p(z) =0, v=+V4AB + C>.

The boundary conditions and constraint (50) now read

| d
z© [Za: o(z) + Cgo(z)] =0,

2=20,21

(52)

(33)

(54)
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at 20 = V4A, 2=z e (33)
and @) =0 forz; <z < zp. (56)

The solution L* is unique if it exists, since we analyse a transformed but equivalent
version of the problem studied in Section 4. The general solution of (53) is given
by the superposition of two Bessel functions

90(2) =0 Ju(2) + CZYV(Z), (57)

where J,.(z) and Y,.(z) are the Bessel functions of order v of first and second kind,
respectively, and ¢; and ¢ are constants of integration. For the general properties
of the Bessel functions, their notation, and for a number of explicit expansions and
identities that will be used later, we refer to Abramowitz and Stegun (1964). In
particular, the function J,(z) has the expansion

X 2]
z (=z=/4)"
Jo()=| = _ 58
@ (2) g nC(v+n+1) (58)
where I'(x) is the I"-function. The function Y, (z) is related to J, and J_,, as

cosvrr J,(2) — J_u(2)

Yo(@) = (59)

sin vir
Therefore for small argument 7 and for v > 0, J, vanishes like z", while Y, and
J_, diverge like z7".
The ratio ¢ /¢ of the arbitrary constants ¢; and ¢» in (57) is fixed by the boundary
conditions (54):

o @ +0LE)|  (d+0)() (60)
a @ +OY@|, @[:+OY@)]|,
Elimination of ¢»/c¢; leads to the determinant condition on v, C, zp and z,
(zd. + C)Ju(2)]. (zd, + CO)Yu(2)l:
A= : 0 : 0l =0. 6l
e+ OVl (e + OVl ©h

Equation (60) or (61) together with the positivity constraint (56) for the func-
tion (57) define the phase transition from bloom to no bloom.
The original variables A, B, C and L* can be recovered from v, C, zo and z; by

2 22 z
o g2 c=c, =202 (©2)
4 25 21
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6.2. The limit L* — oo. For systems with an infinite water-column depth, the
condition takes a simpler form. This can be seen by inserting the small z asymp-
totics of the Bessel functions (58) into (60). Evaluation of the expression for
L* — oo corresponds to z; — 0. One finds

o m (v+C)(z/2)

T o :.lllino (v—0) (/2" T+ DT, =0 fordB=0 (63

sincev = V4AB + C> > |C| for AB > Oand the parameter regimes given in (17).
[In particular in view of the limit z — 0, the factors e “*/? or z=¢ have been kept
in (37) and (54), and we remark that the full expression (54) also vanishes at z = 0,
if and only if ¢2 = 0.] Inserting ¢» = 0 from (63) in equation (57), ¢(z) is found to
be proportional to J,(z), and the boundary condition at z( reduces to

dInJ,(z ‘

(zd; +C)Ju (D], =0 = ——~;—ll—n‘—(—)— =-C for L* — oo (64)
with the positivity constraint

Ju(z) =0 for0 < z < zo. (65)

Now the criterion (64) and (05) is further evaluated. Let us introduce, in particular,

the function
dinJ,(z)  2Ji1(2) _

D= T e
where the last identity results from the general relation J/(z) = J,— (z) —vJ,(2)/z
between Bessel functions. f,(z) solves the first order nonlinear equation

2 ") i
v — fi(2) —z°
<

v, (66)

d; fu(z) = ; Su(0) = . (67)

[ fu(z) is related to the function hy(x) from Section 4 by f,(z) = —2hy(x) and the
relation (52) between x and z.] z¢ is now determined by the constraint (65) and

Holzo) = =C. (68)

We remark that the L* — oo solutions in Fig. 3 have actually been generated by
varying v and zq in (66) and calculating C from (68). The lines in Fig. 3 are lines
of constant A and v. The relation of these parameters to the parameters (A, B, C)
is given in (02).

For the further analytical progress, it is easy to realize either from Abramowitz
and Stegun (1964) or from a construction of the flow of (67), that f, (z) is a mono-
tonically decreasing function of z. Since |[C| < v by construction, the limiting
values for zg are

——C=1)<—>ZO=O, C=0<—>Zo=j;“>l), C=U<—>20=‘jl,_1_1, (69)

with j{ | and ji, the first zero of J;(z) and J,(z) for positive z.
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In the limits zop <« | and z¢ > 1, several asymptotic expansions can be given.
For z; = 4A < 1, we get either from (67) or from Abramowitz and Stegun (1964)
% % % 8
—C=v—— — - - 0(zp)-
T2+ BU+ 2+ 16U + 02+ G+ ) * ((20;)

If also |C| <« 1, we get from expression (70) in lowest order that B = A — C. So
B also has to be small, if A and C are small, cf. Fig. 3. Further expansion with
B=A-C+ O(A+C)?yields

(3A=2C)2A - C) N 143A% — 208A%C + 93AC? — 12C3
2 12

B=A-C-—
+ O0AH+ 04 C)+ -+ 0(CH for A < 1 and IC| <« 1.
(71)

The expansion of (70) for A « 1 and an arbitrary negative value of —C = |C| >

V4AB is

p=—l 24 +0(A%
TL4IC T A+ ICDPR+IC)
Cl(1+|C
for A < 1, C<0 and A<<l——|(TT'——|Z. (72)

For A « 1 and C > ~/4AB, there is no solution with positive B.
For z2 = 4A > 1, also v >> | because of the bound 29 < ji—1; = O(v)

from (69). Expressing the Bessel function J,(z) for argument zg = v — x (v/2)!/?
by Airy functions Ai(x) yields the large v expansion

v\'"* T C 1
Zp =V — ;): .x-‘-)—iﬁ +0;-17.;, (73)

where x[C/v*/?] is defined implicitly by

C _ yp dInAit) 4

p2/3 dx

and w(x) = Ai(x) is the solution of d2w = xw with lim,_. w(x) = 0.

There are two limiting values for x, namely x &~ —1.0 for |C| < v*/* and
x &~ =23 for C > v¥3. [For |C| > v*/? and C < 0, ¢ eventually becomes so
small that the ansatz (73) loses its validity.] Insertion of (62) into (73) for a fixed
value of x results in

C? X 1
B=1—m+m+0<m) for A > 1 and C=>0. (75
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Note that C can become large, while —=2.3 < x < —~1.0forall C > 0.

We finally remark that for L* > 1, the expansion (63) for z7 = 44 ¢7+" « |
inserted into the general relation (60) yields the expansion about the limit (64) of
L* - o0

(zd: + ) Lu(2)
@d: + 0) Y@ |.peim

w(v+C)
v—C)T(v+ 1) ['(v)

— A —L*\v
(Ae ™) (
+O(A e LTy, (76)

The asymptotic expansions (71), (72) and (75) provide simple approximations to
the surface shown in Fig. 3.

7. BACK TO THE ORIGINAL PARAMETERS

Let us return from the dimensionless variables A, B, C and L defined in (10)
to the original variables. These are the death rate ¢, the parameters « and « in the
growth rate (9), the sinking velocity v and the specific light absorption coefficient &
of the phytoplankton, and the incident light intensity /;,, the background turbidity
K. the diffusion constant D and the depth H of the water basin.

7.1. Critical diffusion and water-column depth. We now study the effect of the
diffusion constant D on the phase transition. It was absorbed into the dimensionless
parameters A and C. Hence we now define

alf v
Ay=AD = —=- and Co=CD= . (77)
OZ'KEX aKI)g

The parameters Ag, Cy and D all have the physical dimension of a diffusion con-
stant. A variation of the parameter D for fixed light intensity /;,, amounts to a
variation of A and C with fixed value of B and fixed ratio

y = ¢ _ Gy _ vaKp, _ v oKy, B
A Ap alf, 14

(78)

Possible phase transition scenarios as a function of diffusion constant D and
water depth L where all other parameters are fixed, will be presented in Fig. 5. In
particular, we will discuss the case B = 0.5 as an example, i.e., the case when the
incident light intensity is related to the growth and death rate like ¢ = 0.5 a/};.

Figure 5 can be derived by a simple projection of Fig. 2. To illustrate and ex-
plain this procedure, we introduce Fig. 4 as an intermediate step. The solid curves
in Fig. 4 represent the data of Fig. 2 for B = 0.5 as level curves of constant L*

in the (A, C) plane; the fat solid curve marks the divergence of the maximal water
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B=05

- T v M

10 L 2 " " 2 M h A
0 10 20 30 40 50 60 70

Figure 4. The solid curves in the (A, C)-plane are level curves of constant L*(A, B, C)
for B = 0.5. They present the data of Fig. 2(¢). The fat solid curve denotes L* — o0,
the thin solid curves L* = 1.6, 1.1 and 1. For any combination (A, C) above the fat solid
curve, phytoplankton blooms will exist independent of water-column depth. Conversely,
for any combination (A, C) below the fat solid curve, phytoplankton blooms can exist only
if water-column depth is less than L*(A, B, C). The three straight dashed lines starting
at the origin are lines of fixed ratio y = C/A with the values y = —0.05. 0.1 and 0.15.
Variation along these dashed lines implies that only the diffusion constant D is varied,
whereas all other model parameters are kept constant.

depth L*, while the thin solid curves denote finite values of L*. The straight dashed
lines starting from the origin are lines of constant y with the values y = —0.05
for a buoyant phytoplankton species and ¥y = 0.1 and 0.15 for two species with
different sinking rates. These three dashed lines represent three different possible
behaviours: first, all lines with y < 0 (buoyant or neutrally buoyant species) in-
tersect with the L* — oo-curve precisely once. This intersection point indicates
the value of the turbulent diffusion constant at which the maximal water-column
depth L* diverges. Hence, for buoyant or neutrally buoyant phytoplankton, there
is precisely one critical value of the turbulent diffusion coefficient. Second, the
y = 0.1-line intersects twice with the L* — oo-curve. This indicates that there
is a critical value of the diffusion constant at which the maximal water-column
depth diverges, and another value of D, below which the maximal water-column
depth again becomes bounded. Third, the y = 0.15-line does not intersect with
the L* — oo-curve at all. In this case, there is no critical value of D; rather the
maximal water-column depth is bounded for all values of D. Thus, for sinking phy-
toplankton, there are either two critical values of the turbulent diffusion constant
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Figure 5. The phase boundary of phytoplankton bloom development, plotted as a function
of water-column depth . = a K, H and scaled diffusion constant D/Ag. Phytoplankton
bloom always exists for sufficiently shallow water columns L. < 1. The phase boundary
in the plane of L and D/A depends on B and y. Here it is shown for B = 0.5 and three
values of y. The plots are projections of Fig. 2 (with Fig. 4 as an intermediate step) onto
different plankton species with y = —0.05in(a), y = 0.1 in (b)and y = 0.15 in (¢). We
indicated the asymptotic limits of critical depth Lao at ) — oo, compensation depth Ly
at D — 0, and maximal and minimal critical diffusion Dypax and Dy at L* — oo.

or none at all. To be more precise, between 0.1 and 0.15, there is a y-line tangent
to the L* — oo-curve, where the two intersection points merge and disappear. We
denote this particular value of y as y.(B).

Figure 5 shows the phase boundary of phytoplankton bloom development as a
function of the water-column depth L = o K, H and the scaled diffusion constant
D/ Ay. It should be remarked that these plots depend on the two parameters y and
B only, and that the same values of ¥ and B as in Fig. 4 have been chosen. The
projection procedure from Fig. 4 to Fig. 5 is as follows: the A-axis of Fig. 4 is
inverted to give the 1/A = D/Ag-axis of Fig. 5. The values of L*(A, B, C) along
a line of constant y and B in Fig. 4 are plotted on the L-axis of Fig. 5.

The values of y have been chosen to illustrate the three different possible forms
of the (D, L) diagrams. Figure 5(a) with y = —0.05 is representative for all non-
positive values of y, i.e., for buoyant or neutrally buoyant phytoplankton. As can
be seen in Fig. 4, a line of constant y intersects with each value of L* exactly once.
Hence the maximal water depth L* is a monotonically decreasing function of D,
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and there is only one critical value of D for L* — 00, called the maximal critical
diffusion Dpy,y. For sinking phytoplankton, i.e., for y > 0, there are two possibil-
ities. Figure 5(b) shows the data of Fig. 4 projected onto y = 0.1. Here there are
two critical values of D for L* — oco. We will call these two values the minimal
and the maximal critical diffusion, Dy, and Dy, respectively. For all values of
D between Dy, and D4, a bounded maximal water-column depth does not exist,
and, hence, phytoplankton blooms can develop in any water-column depth. This
figure is representative for all positive y smaller than y,.(B). Figure 5(c) shows the
data for y = 0.15, which implies that y is larger than y,.(B). In this case, there is
no critical value of D for L* — oo. That is, there is always a bounded maximal
water-column depth L*, whatever the value of the diffusion coefticient D.

We note that the limit value Lo, for D — o0 is the same in all three panels in
Fig. 5. This can be understood immediately from Fig. 4, since it corresponds to
the value of L*(A, B, C) in the point (A, C) — (0, 0) that is reached by all y-
lines. Also the limit value Ly for D — 0 is the same for all positive values of y.
It corresponds to the saturation value of L* in Fig. 4 for large A and fixed ratio
y=C/A>0.

In the remainder of this section, we will derive analytical results for the critical
values Dyax and Dy, in the limit L* — o0, and for the critical values Ly and L
in the limits of D — 0 and D — oco. We also present asymptotic expansions about
these limits.

7.2. Compensation depth: the limit D — 0. What happens if turbulent diffu-
sion is negligibly small? In this case, the motion of phytoplankton is governed
by buoyancy or sinking only. Hence, in the long run, buoyant phytoplankton will
completely float at the surface, so the depth of the water column below it does not
play any role, if only at the surface the growth rate is larger than the death rate.
Thus, for y < 0, there is phytoplankton bloom development whenever B < 1, and
hence there is no critical water-column depth L, if diffusion is low [Fig. 5(a)].

In contrast, sinking phytoplankton will sink to the bottom of the water column if
diffusion is negligibly small, and hence they will survive only if the reproduction
rate at the bottom overcomes the death rate. Thus, for sinking phytoplankton, there
always exists a maximal water-column depth at low diffusion, defined earlier as the
compensation depth Lq [Fig. 5(b) and 5(c)]. In terms of equations (9) and (16), the
compensation depth Ly = a K, Hy is given by

-K bhe

gl e Kty =0 = LoB)=-InB  fory >0, D =0. (79)

The calculation presented in this subsection reproduces this result and extends it
with a small D expansion:

3
e = (l - —1— -12- + 0<£—) ) (yAg = Co) (30)
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1 D 1 /D\* D\?
o [*=—InB+—- —+— = ol—=) for 0, D—O0.
" +V Ao+3)/2 (A0> * (A0> e -

In the remainder of the section, we will derive this result from (61) and (62).
v and zg are expressed by Ag, B, y = Cy/Ap > Oand D as

Ao || D 4B 44,
=y— 14 —=——, 0=, —- 81
v D +A0 2 20 D (81)

Hence for fixed Ap, B and ¥ > 0 and for D — 0, we always have v > 1 and
20 < v. Furthermore z; = 7y e~%"/*> < z;. Therefore for the evaluation of the
Bessel functions in (61), Debye’s asymptotic expansions can be used:

() e VX (l+iuk(t)> V.2 ~ —2 e VX <l+i uk(t))
T Vamvr = v ’ e V2wt pa (=v)k )’
2\ —1/2
2 Ky 2
:(1—7) . x=t—arcoshe N —nZ £ 0(1). (82)
V- Z Z

The u,(¢) are polynomials of degree 3k in ¢, that can be found in Abramowitz and
Stegun (1964). Insertion of these expansions into the determinant (61) leads to
the prefactors e VXG0 =X () g (z1/z0)" = eV 2 and emV(X @) —x (1)) ay QvL*/2)
For any finite L* and v — 00, these factors dominate the expressions in (61).
Further evaluation similar to (63), (64) shows that in the limit of vanishing diffusion
constant and for C > 0, L* as a function of A, B and C is determined by

(Zd: +C) Y\n(Z)L’,l = 0. (83)

This equation has a solution for D — 0 only if C > 0. Evaluating (83) further
with the help of (82) gives a functional relation between the three quantities

e 1 D AB D B B
A=1——, f===—  and €=—=-—"——=3§—,
B C y Ag C- Ap v~ Y
(84)
since the parameters in (83) can be written as
| Vi+e l
C=-, v= T IR N L (85)
) 8 Y 1 +€A

Evaluating (83) up to order D?, the D-expansion of A is A = 8 + O (D?). Insertion
of (84) yields our final result (80).
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7.3. Critical depth: the limit D — oco. What happens if mixing by turbulent
diffusion becomes infinitely fast? In this case, the phytoplankton is homoge-
neously distributed through the whole water column, and no spatial structures re-
main. Hence the critical depth Lo = a K, Hoo as defined by Sverdrup (1953) is
reached if the growth rate integrated over the whole column balances the death rate
for constant phytoplankton density
/Hx e | — p—Lx
gl e *Yds =0 <« B=-—-—— for D — oc. (86)
0 L

Here the critical depth Lo, = Lo (B) is the positive solution of the above equation.
In the remainder of this subsection, we will expand in the small parameter 1/D
about the asymptotic behaviour for D — 00. The result of this calculation can be
written as

-

A Ao\~
L*=Loo(B)+‘5(lLl(Bv)/)+("l')9> Ly(B,y)+---, &7

where L) is given by

Lo
LY) = 3 Lo —2(1— B
L\(B,y) ()(B—l-{-BLm)X[y(B o — 2( )

+(2B*L2, +3B(3B — 2)Loo + 6(2B — 1)(B — 1))]. (88)

Let us first discuss the consistency and implications of this result: if the death
rate at the surface almost equals the growth rate, i.e., if B 1 1, then Lo =
2(1 — B) 4+ O(1 — B)* is small and the expansion (87) reproduces the earlier re-
sult (48). If the death rate at the surface is negligible, i.e., if B | 0, then the
water depth diverges like Lo, = 1/B + O(e~'/8/B). Furthermore we remark that
Loo > Lo from (79) for all B and C > O: that is, the critical depth is always larger
than the compensation depth since phytoplankton distributed over the whole water
column has better reproduction conditions than phytoplankton at the bottom.

The results (86)—(88) are now derived from the determinant (61). For D — oo,
the parameters z, v and C are small. Expressed in terms of the small parameter
Z(:) =4A =4A(/D and the fixed parameters y = Cy/Ap, B and L*, they read

=e ", C =y /4, v =B z5+ v’ z/l6. (89)

Z

e

Since z; < zg < 1, the determinant (61) can now be evaluated with the asymptotic

expansions (58) and (59):
evl,*/’.’ e—UL*/Z

pv(z0) p-u(z1) +
vir vir

A=— P-v(z0) pu(z1)

o]

Qv+ O) (=27 /4
puz) =) R RTEET

(90)

n=0
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A short consideration shows that A(—v) = A(v), so A is actually a function of 2,
and therefore the expansion of A orders in powers of 1/D, not 1/ V'D. With the
ansatz (87) and

1 [ A A

—————-AO+——+—-§+---], (91)
v DD Db D-

the L, can be solved hierarchically from A, = 0 for all k. Since Ay = 0 for
1 —e k- BL,, =0, (92)

the result (86) for Lo, follows immediately. A} = 0 determines L, the result (88)
was given earlier.

7.4. Critical diffusion: the limit L* — oo. The case of diverging water depth
L* — oo as a function of A, B and C was already analysed in detail in Section 6.2:
in general, the relation between A, B and C for infinite water depth is given by

20 Ju-1(20)

) =v-C with v =+v4AB + C* and 20 = V4A.
viZ0

(93)
The critical diffusion D as a function of Ag, 8 and Cy results from replacing A
by Ag/D and C by Co/D = yAo/D. The identity (93) yields both the maximal
critical diffusion Dy,,x and the minimal critical diffusion D,y,, if they exist. How-
ever, the relation is implicit, and explicit predictions for the critical diffusion can
only be derived by asymptotic expansions valid in some part of parameter space.
Depending on the values of B and y = Cy/ Ay, these expansions take different
forms. We only consider a few special cases with the following explicit results:
For z; = 4Ao/D <« 1, equation (93) is approximated by equation (70). If,
furthermore, B <« 1 and y of order unity, the diffusion constant according to (71)
diverges like

Dy 1—y (B3-2y)2-y) 35 — 99y + 82y% — 21y° 2
= — B O(B*
Ao B 2(1 =) * 12(1 — )3 + OB

for B < 1 and y < O(1). (94)

This is an explicit result for the maximal critical diffusion Dy, in the limit of small
death rate B.

For buoyant phytoplankton with y < 0 and large |y|, another approximation for
the upper critical diffusion Dy, can be derived from (72):

Dpyw =B ~ (1-B) l
A T TR +0(?>
for y <0 and |yl > max[4(1 — B), B/(l — B)].(95)




Critical Conditions for Phytoplankton Blooms 1119

For weakly sinking plankton with y > O and y « 2+/1 — B, the minimal critical
diffusion Dy, is, according to (75),

Diin _ Vz <1 + O( Y __>2/3 for0 <y < (1- B)z- (90)
Ag 4(1 — B) (1—B)*

This last approximation reproduces the result of Riley et al. (1949) and Shigesada
and Okubo (1981) that D = v>/(4 g(I;,)) + - - - and restricts its validity to y «
(1 - B)>.

8. SUMMARY AND CONCLUSIONS

8.1. Theoretical summary. We have analysed the critical conditions for phyto-
plankton bloom development. Our results are particularly relevant for bloom de-
velopment in eutrophic waters, as the model assumes that phytoplankton growth is
determined by light availability only, whereas all nutrients are assumed to be avail-
able in ample supply. What distinguishes our analysis from many previous anal-
yses of light-limited phytoplankton dynamics (Kok, 1952; Sverdrup, 1953; Evers,
1991; Platt ez al., 1991; Huisman, 1999; Huisman et al., 1999a) is that we have
here specifically focussed on incomplete mixing of phytoplankton (Shigesada and
Okubo, 1981; Ishii and Takagi, 1982; Totaro, 1989; Huisman et al., 1999b,¢). This
paper confirms the recent numerical discovery of Huisman et al. (1999b,c) of a
critical threshold value for the vertical turbulent diffusion coefficient by means of
rigorous mathematical analysis. Furthermore, the paper extends the investigation
to sinking and buoyant phytoplankton. Using dimensional analysis, the physical
parameters like incident light intensity, background turbidity, water-column depth,
maximal growth rate of phytoplankton, and so on reduce to the four dimensionless
parameters (A, B, C, L) defined in equation (16). These four parameters estab-
lish scaling rules and similarity laws between different phytoplankton—water-light-
systems. A transformation from dimensionless parameters back to physical param-
eters allows a straightforward interpretation of the conditions for phytoplankton
bloom development in terms of measurable species traits and environmental con-
ditions.

The full four-dimensional parameter space of phytoplankton bloom development
cannot be displayed in a single three-dimensional plot. Therefore two different pro-
jections onto three-dimensional parameter spaces are represented in Figs 2 and 3.
In the different panels of Fig. 2, the maximal water-column depth L*(A, B, C) is
shown as a function of A and C, and the panels are distinguished by different fixed
values of B. Figure 3 shows the surface in the three-dimensional parameter space
(A, B, C), where the maximal water-column depth diverges L*(A, B, C) — oc.
The water-column depth L can be treated as being infinite, from the perspective
of phytoplankton bloom development, if L >> 1/v in dimensionless parameters,
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orif H > D/+/4¢D + v? in physical parameters. Various analytical results and
asymptotic expansions for the phase boundaries of phytoplankton bloom develop-
ment, in terms of the dimensionless parameters, are derived in Section 6.

In Section 7, these results are transformed back to physical parameters, and the
complete scenario of critical diffusion vs critical depth is visualized in Fig. 5,
as well as evaluated analytically. We emphasize that the three different types of
diagrams of critical depth vs critical diffusion in Fig. 5 are distinguished by two
parameters only, namely B and y. The parameter B = £/(al) is the ratio be-
tween death and reproduction rate of the phytoplankton at the surface, and y =
va Ky, /(al}) is the ratio between sinking velocity times light absorption coeffi-
cient and the reproduction rate at the surface.

Our analysis was restricted to growth equations in the form of (6) and (9). This
choice kept the dimensionless parameter space four-dimensional, and allowed our
transformation to Bessel functions and the use of their tabulated properties. An
analysis of more complex growth equations in the form of (7) or (8) would add an
additional 10th physical parameter ¢, which would make the dimensionless param-
eter space five-dimensional. In that case, our four-dimensional results with ¢ = 1
would apply to low light conditions only (/;, < 1/c, to be precise), where the g(/)
function is still in its linear range. However, the nonlinear behaviour of g(/) for
larger / can be mimicked by an exponent 0 < o < 1 in (9), and this form of g(/)
is fully covered by our analysis.

8.2. General summary and conclusions. From a biological perspective, we
found that the conditions for bloom development depend quite sensitively on the
specific weight and hence on the vertical velocity of the phytoplankton species
concerned. Our results can be characterized as follows:

e Bloom conditions for positively buoyant phytoplankton and neutrally buoyant
phytoplankton are summarized in Fig. 5(a). They can develop blooms in highly
turbulent waters if the water-column depth is less than the critical depth (Sverdrup,
1953). They can develop blooms in waters with an intermediate or low turbulent
diffusion independent of water-column depth;

e Bloom conditions for sinking phytoplankton with a low to moderate sinking ve-
locity are summarized in Fig. 5(b). They can develop blooms in highly turbulent
waters if the water-column depth is less than the critical depth. Also, they can
develop blooms in quiet waters if the water-column depth is less than the compen-
sation depth. Finally, in waters where turbulent diffusion has a value between the
minimal and the maximal turbulent diffusion, they can develop blooms indepen-
dent of water-column depth;

e Bloom conditions for sinking phytoplankton with a high sinking velocity are
summarized in Fig. 5(c). They cannot develop blooms in deep waters. They can
develop blooms in turbulent shallow waters if the water-column depth is less than
the critical depth, and in quiet shallow waters if the water column depth is less than
the compensation depth.
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Thus, compared to previous work that studied incomplete mixing of neutrally
buoyant plankton (Huisman er al., 1999b,c), this paper shows that sinking phy-
toplankton species have either two or no critical threshold values for the vertical
turbulent diffusion coefficient [Fig. 5(b) and 5(c)]. In contrast, positively buoyant
and neutrally buoyant phytoplankton always have one critical threshold value for
the vertical turbulent diffusion coefticient, since a minimal turbulent diffusion Dy,
does not exist for buoyant species [Fig. 5(a)].

Intuitively, these various patterns can be explained by the light requirements of
phytoplankton and the position they can obtain in the vertical light gradient. Nei-
ther buoyant nor sinking phytoplankton species can persist if vigorous mixing ex-
poses the phytoplankton population to the low depth-averaged light conditions of
deep waters [upper right corner in Fig. 5(a)~5(c)]. Phytoplankton species with
a low sinking velocity cannot persist in deep waters if turbulent diffusion is too
low to prevent sinking losses of phytoplankton into the dark [lower right corner in
Fig. 5(b) and 5(c)], but these phytoplankton species may persist if turbulent diffu-
sion has intermediate values, because growth rates may then overcome both mixing
rates and sinking losses. Phytoplankton species with a high sinking speed cannot
persist in deep waters at all, independent of turbulence, because their growth rate
is insufficient to compensate for the sinking losses [Fig. 5(c)].

These qualitative considerations together with depth profiles, with some (D, L)-
plots of the type of Figs. 5(b) and 5(c) and with population size data between the
phase boundaries can be found in Huisman et al. (2001 or 2002).

Many empirical studies confirm the importance of vertical mixing processes for
phytoplankton bloom development (Reynolds ez al., 1983; Jones and Gowen, 1990;
Cloern, 1991; Berman and Shteinman, 1998). One interesting example of an in-
depth study supporting the theory comes from Lake Nieuwe Meer, a deep and
eutrophic lake in The Netherlands (Visser et al., 1996a,b). In former days, the
phytoplankton of Lake Nieuwe Meer was dominated by Microcystis, a buoyant
cyanobacterial species that can form toxic algal blooms. Artificial increase of ver-
tical turbulent diffusion in the lake, by means of large-scale air bubbling, led to the
replacement of buoyant Microcystis by sinking phytoplankton species, especially
several diatoms and the green alga Scenedesmus (Visser et al., 1996a). Consistent
with these field observations, laboratory experiments with Scenedesmus showed
that this sinking species is lost from the water column if turbulent diffusion is too
low (Visser et al., 1996b). Hence, this in-depth study underscores the idea that an
increased turbulent mixing of the water column may lead to shifts in species com-
position from buoyant species towards sinking phytoplankton species, in line with
the theory developed here.

As a general message, our model analysis and the given empirical example
illustrate that incomplete mixing has a major impact on phytoplankton dynamics.
Although incorporation of mixing processes in plankton models is gradually
becoming more popular, there are still many models in plankton ecology and ocea-
nography that lack information on the turbulence structure of the water column.
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Numerous models, sometimes even used as policy tools in water management,
simply assume uniform mixing of the phytoplankton populations within the upper
water column. Our mathematical analysis suggests that such simplified model ap-
proaches, that neglect the turbulence structure of the water column, might seriously
underestimate opportunities for phytoplankton bloom development.
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